Typical Applications

-900MHz ISM Band Applications

- 400MHz Industrial Radios
- Driver for Higher Power Applications
- Portable Battery-Powered Equipment
- Commercial and Consumer Systems
- Base Station Equipment

Product Description

The RF2104 is a medium power amplifier IC. The device is manufactured on a low cost Silicon process, and has been designed for use as the final RF amplifier in UHF radio transmitters operating between 400 MHz and 1000 MHz . It may also be used as a driver amplifier in higher power applications. The device is packaged in a plastic quad-batwing 16-lead package, and is self-contained with the exception of the output matching network, power supply feed line, and bypass capacitors. It produces an output power level of up to 500 mW (CW) at 3.6 V . The device can be used in 3 cell battery applications. The maximum CW output at 3.6 V is +27 dBm . The unit has a total gain of 26 dB , depending upon the output matching network.

Optimum Technology Matching ${ }^{\circledR}$ A pplied $\begin{array}{lll}\square \text { Si BJT } & \square \text { GaAs HBT } & \square \text { GaAs MESFET } \\ \square \text { Si Bi-CMOS } & \square \text { SiGe HBT } & \square \text { Si CMOS }\end{array}$

Functional Block Diagram

Package Style: CJ 2BAT0

Features

- 400 MHz to 1000 MHz Operation
- Up to 500 mW CW Output Power
- 26 dB Small Signal Gain
- 40dB Gain Control Range
- Single 2.7V to 3.6V Supply
- 40\% Efficiency

Ordering Information

RF2104	Medium Power Amplifier
RF2104 PCBA-L	Fully Assembled Evaluation Board $(830 \mathrm{MHz})$
RF2104 PCBA-H	Fully Assembled Evaluation Board $(915 \mathrm{MHz})$

RF2104

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage	-0.5 to +6.0	$\mathrm{~V}_{\mathrm{DC}}$
Gain Control Voltage $\left(\mathrm{V}_{\mathrm{PC}}\right)$	-0.5 to +3.0	V
DC Supply Current	500	mA
Input RF Power	+12	dBm
Output Load VSWR	$20: 1$	
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$

RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However, RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).

Parameter	Specification			Unit	Condition
	Min.	Typ.	Max.		
Overall					$\begin{aligned} & \mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PC}}=2.5 \mathrm{~V}, \\ & \mathrm{Z}_{\mathrm{LOAD}}=10 \Omega, \mathrm{P}_{\mathrm{IN}}=+6 \mathrm{dBm}, \text { Freq }=850 \mathrm{MHz} \end{aligned}$
Frequency Range		400 to 1000		MHz	
Bandwidth		150		MHz	With fixed matching network
Maximum Output Power		+27		dBm	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{P}_{\text {IN }}=+6 \mathrm{dBm}$
Maximum Output Power		+27		dBm	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{P}_{\text {IN }}=+6 \mathrm{dBm}$
Output Third Order Intercept		+36		dBm	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$
Power Added Efficiency		40		\%	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{P}_{\text {OUT }}=+27 \mathrm{dBm}, \mathrm{P}_{\text {IN }}=+6 \mathrm{dBm}$
Small Signal Gain	24	25	28	dB	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{PC}}=+2.5 \mathrm{~V}$, Freq $=850 \mathrm{MHz}$
Gain Control Range		35	40	dB	$\mathrm{V}_{\mathrm{PC}}=0 \mathrm{~V}$ to 2.5 V
Second Harmonic		-50		dBc	Without external second harmonic trap
Third Harmonic		-50		dBc	
Noise Figure		5.5	7.0	dB	
Input Impedance		50		Ω	
Input Return Loss		-20	-15	dB	With external matching network; see application schematic
Input Return Loss		-10		dB	Without external matching network
Output Impedance		50		Ω	Not matched for maximum output power
Output Return Loss		-13		dB	Without external matching network
Load Impedance		$5+\mathrm{j} 0$		Ω	Load Impedance for Optimal Power Match
Power Supply					
Power Supply Voltage		2.7 to 3.6		V	
Power Supply Idle Current		250	300	mA	$\mathrm{V}_{\mathrm{PC}}=2.5 \mathrm{~V}$
Total "OFF" Current Drain		1	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PC}}<0.25 \mathrm{~V}_{\mathrm{DC}}$; No RF input power
Total "OFF" Current Drain		4		mA	$\mathrm{V}_{\mathrm{PC}}<0.25 \mathrm{~V}_{\mathrm{DC}} ; \mathrm{P}_{\text {IN }}=+6 \mathrm{dBm}$
Current into PC pin			1	mA	$\mathrm{V}_{\mathrm{PC}}=2.5 \mathrm{~V}$
Current into PC pin		0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{PC}}=0 \mathrm{~V}$
Turn-on Time		<100		ns	$\mathrm{V}_{\mathrm{PC}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{PC}}=+2.5 \mathrm{~V}_{\mathrm{DC}}$

Pin	Function	Description	Interface Schematic
1	VCC1	Power supply for the bias circuits. This pin draws current proportional to V_{PC}. When V_{PC} is 2.5 V the maximum current is about 30 mA . When V_{PC} goes down to 0 V the current also goes down to 0 mA .	
2	GND	Ground connection. For best performance, keep traces physically short and connect immediately to ground plane. A via hole under each ground pin to the ground plane is recommended.	
3	GND	Same as pin 2.	
4	VCC2	Power supply for the driver stage and interstage matching. An external decoupling capacitor is required. The electrical length between the pin and this capacitor affects the gain. See the application schematic for recommended line length for optimum gain. For operation at frequencies below 600 MHz a series inductor is required.	
5	RF IN	50Ω RF input. DC voltages are present at this pin, and an external blocking capacitor is required when connecting this pin to a DC path to ground. For optimum impedance matching, a shunt inductor to ground is recommended; see the application schematic for details.	See pin 4 schematic.
6	GND	Same as pin 2.	
7	GND	Same as pin 2.	
8	PC	Power control pin. A DC voltage between 0 V and 3.0 V can be applied to control the gain. When no gain control is required this pin should be connected to a fixed voltage between 2.5 V and 3.0 V . This pin draws some current proportional to V_{PC}. When V_{PC} is 2.5 V the maximum current into this pin is about 1 mA .	See pin 1 schematic.
9	GND	Same as pin 2.	
10	GND	Same as pin 2.	
11	GND	Same as pin 2.	
12	RF OUT	RF output. The power supply for the output stage also needs to be supplied to this pin through the external matching circuit. The load impedance to this pin should be $5+\mathrm{j} 0 \Omega$ for maximum output power.	
13	RF OUT	Same as pin 12.	See pin 12 schematic.
14	GND	Same as pin 2.	
15	GND	Same as pin 2.	
16	GND	Same as pin 2.	

RF2104

Application Schematic - 915 MHz

Application Schematic -830 MHz

RF2104
Application Schematic -420 MHz

Evaluation Board Schematic - 915 MHz
(Download Bill of Materials from www.rfmd.com.)

Efficiency is affected by actual position of C9 and C10;
C9 is mounted close to DUT and C10 mounted away from DUT.
Evaluation Board Schematic -830 MHz

Evaluation Board Layout - 915 MHz
3" x 2"

